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ABSTRACT
Motivation: Expression-based analysis for large families
of genes has recently become possible owing to the devel-
opment of cDNA microarrays, which allow simultaneous
measurement of transcript levels for thousands of genes.
For each spot on a microarray, signals in two channels
must be extracted from their backgrounds. This requires
algorithms to extract signals arising from tagged mRNA
hybridized to arrayed cDNA locations and algorithms to
determine the significance of signal ratios.
Results: This paper focuses on estimation of signal ratios
from the two channels, and the significance of those ratios.
The key issue is the determination of whether a ratio is
significantly high or low in order to conclude whether the
gene is upregulated or downregulated. The paper builds
on an earlier study that involved a hypothesis test based
on a ratio statistic under the supposition that the measured
fluorescent intensities subsequent to image processing
can be assumed to reflect the signal intensities. Here,
a refined hypothesis test is considered in which the
measured intensities forming the ratio are assumed to be
combinations of signal and background. The new method
involves a signal-to-noise ratio, and for a high signal-to-
noise ratio the new test reduces (with close approximation)
to the original test. The effect of low signal-to-noise ratio on
the ratio statistics constitutes the main theme of the paper.
Finally, and in this vein, a quality metric is formulated for
spots. This measure can be used to decide whether or
not a spot ratio should be deleted, or to adjust various
measurements to reflect confidence in the quality of the
measurement.
Contact: e-dougherty@tamu.edu

INTRODUCTION
Expression-based analysis pertaining to large families of
genes has become possible in recent years owing to the

∗To whom correspondence should be addressed.

development of cDNA microarrays, in which transcript
levels can be simultaneously determined for thousands of
genes (Schena et al., 1995). Microarray data have been
used to cluster genes based on expression profiles, charac-
terize and classify disease based on the expression levels
of gene sets, and to design discrete nonlinear predictors
of gene expression levels based on both the expression
levels of other genes and quantifiers for external stimuli.
When using cDNA microarrays, the signal at each spot
must be extracted from the background. This inevitably
involves image-analysis algorithms capable of extracting
signals arising from tagged mRNA hybridized to arrayed
cDNA locations (Chen et al., 1997; Schadt et al., 2000;
Kim et al., 2001) and variability analysis and measure-
ment quality control assessment (Chen et al., 1998; New-
ton et al., 2001; Brown et al., 2001; Wang et al., 2001).

One of the first image processing algorithms having ba-
sic components specially developed for microarrays (Chen
et al., 1997) applies image processing techniques to mea-
sure the signals and ratio statistics to determine whether a
ratio is significantly high or low. This paper builds on and
extends the algorithm by replacing the original hypoth-
esis test for determining ratios that significantly deviate
from unity. The original test involves a ratio statistic under
the supposition that the measured fluorescent intensities
subsequent to image processing can be assumed to reflect
the signal intensities. Under this supposition, the hypothe-
sis test has proven to work satisfactorily when signals are
strong; however, it has not performed consistently satisfac-
torily for weak signals. This paper introduces and studies a
refined hypothesis test in which the test statistic involves a
ratio of measured intensities that are combinations of sig-
nal and background noise. The extension involves a signal-
to-noise ratio and it is seen that for a high signal-to-noise
ratio the new test reduces (with close approximation) to
the original test.

The paper also proposes a quality metric for spots. This
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metric can be used to decide whether or not a spot ratio
should be accepted, or to adjust various measurements to
reflect confidence in the quality of the measurement. The
overall quality measure is defined as the minimum of four
individual quality metrics. The individual metrics relate to
fluorescent intensity, target area, background flatness, and
signal intensity consistency.

Since measurement via image processing is essential
to the ratio statistics discussed in this paper, we provide
a web page (http://arrayanalysis.nih.gov/resources/pub
download/bio1 supplement.htm) detailing the changes in
our image processing methods that have been adopted
since an earlier paper describing our system (Chen et al.,
1997). A block diagram of the image analysis system is
shown in Figure 1 (which is on the web page, along with
all other figures referred to in this paper). The description
of image processing on the web page treats the following
particulars: target segmentation, clone information assign-
ment, background detection (Figure 2), target detection,
intensity measurement, and ratio calculation.

RATIO STATISTICS
In typical biological samples, the number of genes that
express at a similar level is approximately exponentially
distributed (Bishop et al., 1974). Most genes are weakly
expressed, while a limited number are abundantly ex-
pressed. The detection of weakly expressed genes is lim-
ited by the fluorescent background, which is typically a
combination of nonspecific bonding of the tagged mRNA
samples to the glass slide and background fluorescence
of the confocal microscope. In many practical microarray
analyses, the ratio statistic has been chosen to quantitate
the relative expression levels differentially expressed in
two biological samples. This choice is based on certain as-
sumptions: (1) the level of a transcriptor depends roughly
on the concentration of the related factors which, in turn,
govern the rate of production and degeneration of the
transcript; (2) the random fluctuation for any particular
transcript is normally distributed; and (3) as a fraction
of abundance, the variation of any transcript is constant
relative to most of the other transcripts in the genome,
which means that the coefficient of variation can be taken
as constant across the genome. In most practical mi-
croarray applications, the evidence of equally distributed
genes, regardless of their expression levels, around the
45◦ diagonal line in a log–log scatter plot shows that the
constant-coefficient-of-variation assumption is not overly
violated. Nonetheless, even if the assumption intrinsically
holds for expression levels, a detected expression level
may not satisfy the assumption, particularly when the gene
expresses weakly. Expression-level variation increases
when the levels approach the background fluorescence,
even when image processing techniques reliably detect

the cDNA target. Therefore, it is necessary to understand
the properties of the ratio statistic when the expression
level is near the background.

In the following subsections, we first briefly review our
previous results for gene expression ratio statistics under
the ideal situation. A new ratio model is then proposed
in which the background fluorescence is included. We
will demonstrate that the weaker expression level causes
a larger coefficient of variation, thereby violating the
previous assumption of constant coefficient of variation
and causing a larger confidence interval for the null
hypothesis. We will propose a simulation method to
compensate the confidence internal for expression ratio
analysis.

Ratio statistics assuming a constant coefficient of
variation
Consider a microarray having n genes, with red and green
fluorescent expression values labeled by R1, R2, . . . , Rn
and G1, G2, . . . , Gn , respectively. Previously, we have
proposed a ratio-based hypothesis test for determining
whether Rk is over- or underexpressed relative to Gk ,
assuming a constant coefficient of variation across the
microarray (Chen et al., 1997). This assumption facilitates
pooling statistics on gene expression ratios across the
microarray. Letting µRk and σRk denote the mean and
standard deviation of Rk (similarly for Gk), the assump-
tion means that

σRk = cµRk

σGk = cµGk (1)

where c denotes the common coefficient of variation (cv).
The desired hypothesis test is

H0 : µRk = µGk

H1 : µRk �= µGk (2)

using the ratio test statistic Tk = Rk/Gk . Under the null
hypothesis H0, Equation (1) implies that σRk = σGk .
Assuming Rk and Gk to be normally and identically
distributed, Tk has the density function

fTk (t; c) =
(1+ t)

√
1+ t2

c(1+ t2)2
√

2π
exp

[
−(t − 1)2

2c2(1+ t)

]
(3)

The subscript k does not appear on the right-hand side
of Equation (3). Hence, the density function holds for all
genes, and all ratios satisfying the null hypothesis can
be pooled to estimate the parameter of Equation (3). The
estimate is given by

ĉ =
√√√√1

n

n∑
i=1

(ti − 1)2

(t2
i + 1)

(4)
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where t1, t2, . . . , tn are ratio samples taken from a family
of housekeeping genes on a microarray.

For a microarray derived from two identical mRNA
samples co-hybridized on one slide (self–self experiment),
the parameter c (cv of the fluorescent intensity) provides
the variation of assay. However, for any experiment, to
guarantee the null hypothesis condition in Equation (2) is
not always possible. One alternative is to duplicate some
or all clones where the same expression ratio is expected.
For the ratio of expression ratios, T = t/t ′, and its natural
log-transform,

log Tk = log tk − log t ′k = (log Rk − log R′k)
−(log Gk − log G ′k) (5)

it can be shown that (see Appendix on the web page)

c ≈
√√√√1

n

n∑
i=1

(� log Rk)
2 = σlog Rk (6)

where � log R = (log R − log µR). Therefore,

σ 2
log T ≈ (σ 2

log R + σ 2
log R′)+ (σ 2

log G + σ 2
log G ′) = 4c2 (7)

when the measurement of the log-transformed expression
level is approximately normally distributed (see web
page). For any given experiment with some duplicated
clones, σ 2

log T is easily calculated, and along with it the
coefficient of variation of the assay.

The constant coefficient of variation condition imposed
by Equation (1) implies a constant standard deviation of
the log-transformed ratio (approximation) given by Equa-
tion (6), where the log-normal distribution is assumed.
This condition is behind many higher-level analyses such
as clustering, classification, and other differential expres-
sion significance assessments (Tusher et al., 2001). On the
other hand, some studies indicate that the coefficient of
variation varies with the expression intensities (Hughes et
al., 2000; Nadon et al., 2001). We will extend our study in
later sections.

In practical application, a constant amplification gain m
may apply to one signal channel, in which case the null
hypothesis in Equation (2) may become µRk = mµGk .
Under this uncalibrated signal detection setting, the ratio
density can be modified by

fT (t; c, m) = 1

m
fT (t/m; c, 1) (8)

where fT (; c, 1) is given by Equation (3). In (Chen et
al., 1997), an estimation procedure for the parameter m
is proposed. It has proven efficient during four years of
application. This procedure is called normalization. To
satisfy the null hypothesis given by Equation (2), a set

of pre-selected housekeeping genes (about 100 different
clones) or the entire gene set available in each array
may be used for the estimation procedure. A set of
commonly used housekeeping genes has been preferred in
the procedure since they are believed to carry minimum
changes in many biological systems. Since no set of
genes is unchanged in all conditions, the normalization
procedure automatically eliminates housekeeping genes if
their expression ratios vary by more than 2-fold. The same
requirement is used when the entire gene set is used in the
normalization procedure.

To decide whether expression levels of a gene from
two biological samples are significantly different, we
would like to find a confidence interval such that within
the confidence interval, the null hypothesis given in
Equation (2) cannot be rejected: the expression ratio,
Tk = Rk/Gk , of the gene under consideration is not
significantly deviated from 1.0 if the ratio is within
the confidence interval. The confidence interval can be
evaluated by integrating the ratio density function given
by Equation (3). Examples of confidence intervals are
given in Table 2 of (Chen et al., 1997). Since the
confidence interval is determined by the parameter c,
one can either use the parameter derived from pre-
selected housekeeping genes (Equation (4)), or a set of
duplicated genes (Equation (7) if they are available in
the array. The former confidence intervals contain some
levels of variation from the fluctuation of the biological
system that also affect the housekeeping genes, while the
latter contains no variation of the biological fluctuation,
but contains possible spot-to-spot variation. Spot-to-spot
variation is not avoidable if one wishes to repeat the
experiment. The confidence interval derived from the
duplicated genes is termed as the confidence interval of
the assay.

Ratio statistics for low signal-to-noise ratio
The condition of constant cv is made under the assumption
that Rk and Gk are the expression levels detected from
two fluorescent channels. The assumption is based on
image processing that suppresses the background noise
relative to the true signal. It proves to be quite accurate
for strong signals, but problems arise when the signal is
weak in comparison to the background. Even with image
processing, the actual expression intensity measurement is
of the form

Rk = (S Rk + B Rk)− µB Rk (9)

where S Rk is the expression intensity measurement of
gene k, B Rk is the fluorescent background level, and µB Rk
is the mean background level. The measurable quantities
are (1) signal with background, S Rk + B Rk , and (2) the
surrounding background. The null hypothesis of interest
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is µS Rk = µSGk . Taking the expectation in Equation (9)
yields

µRk = E[Rk] = E[(S Rk + B Rk)−µB Rk ] = µS Rk (10)

Since µGk = µSGk , the hypothesis test of Equation (2)
is still the one with which we are concerned, and we still
apply the test statistic Tk .

There is, however, a major difference. The assumption
of a constant cv applies to S Rk and SGk , not to Rk and
Gk , and the density of Equation (3) is not applicable.
The matter can be quantified by defining an appropriate
signal-to-noise ratio. Assuming that S Rk and B Rk are
independent,

σ 2
Rk
= σ 2

S Rk
+ σ 2

B Rk
= (cµS Rk )

2 + σ 2
B Rk

, (11)

where c is the (assumed constant) cv of S Rk . Re-arranging
Equation (9) yields S Rk = Rk−(B Rk−µB Rk ), so that the
strength of the signal is determined by the extent to which
Rk exceeds B Rk−µB Rk . Taking into account the variation
in the background (which tends to obscure the signal), we
define the signal-to-noise ratio (SN R) for the red channel
for gene k to be

SN RRk =
E[S Rk]

E[B Rk − µB Rk ] + σB Rk

= µS Rk

σB Rk

(12)

Let cRk be the cv of the observed expression level of gene
k from the red channel. Then

c2
Rk
=

(
σRk

µRk

)2

= (cµS Rk )
2 + σ 2

B Rk

µ2
S Rk

= c2 + σ 2
B Rk

µ2
S Rk

= c2 +
(

1

SN RRk

)2

(13)

If SN R � 1 for gene k, meaning the expression signal
is strong, then the measured cv is close to a constant,
namely cRk ≈ c, but if the signal is weak, the constant
cv condition is violated and Equation (3) no longer holds.
Figure 3 shows how in most practical applications, the
weaker expression signals (at the lower left corner of the
scatter plot) produce a larger spread of gene placement.

The observation of larger variation for weaker signals
has been previlously reported (Hughes et al., 2000 (Sup-
plemental); Nadon et al., 2001). In the error model studied
in (Hughes et al., 2000), the variation of the expression
signal consists of two parts: a constant part and a func-
tion of the average signal. Equation (13) differs from that
model in assuming that it is the fluorescent background
variation (instead of a function of the signal) and its inter-
action with the signal that causes the large deviation when
the signal is weak.

Confidence interval for the test statistic
To take into account the lack of a constant cv for the
observed levels, we need to examine the hypothesis test
of Equation (2) relative to critical regions for the test
statistics, where now

Tk = Rk

Gk
= (S Rk + B Rk)− µB Rk

(SGk + BGk)− µBGk

(14)

We maintain the following assumptions: S Rk , SGk , B Rk ,
and BGk are normally distributed and independent, there
is a constant c for S Rk and SGk (for all k), and there is
a collection of housekeeping genes that can be used as an
internal control set.

Due to the complexity of Equation (14), we use the
Monte Carlo method and simulate various conditions
to obtain properties of the ratio statistic. Dropping the
subscript k to ease notation, the simulation is set up
according to

T ← N (p, σp)+ N (µB R, σB R)− µB R

N (p, σp)+ N (µBG, σBG)− µBG
(15)

where the notation ‘←’ is used to express the distributions
in the simulation and the distribution of T . We assume
a given expression intensity has a normal distribution
N (µ, σ) with mean expression intensity of p = µS Rk =
µSGk (= µRk = µGk ) under the null hypothesis. This
normality assumption says that when multiple measure-
ments are taken for one expression level, they follow a
normal distribution. The mean expression level, p, may
possess some other distribution according to biological
properties, such as an exponential distribution or log-
normal distribution. Under the assumption of constant cv
for the signal (without the background), σp = cp. There
is no assumption that either the means or the variances
of the background levels from the two channels are the
same. We introduce the following parameters: a variance
parameter σB = max {σB R, σBG}, a signal-to-noise-ratio
s = p/σB , and the background standard-deviation ratio
κ = σB R/σBG . Then

T ← N (sσB, csσB)+ N (0, κσBG)

N (sσB, csσB)+ N (0, σBG)
(16)

Figure 4(a) shows the simulation for c = 0.2 and σB R =
σBG = 100 (or κ = 1). The characteristics of the adaptive
confidence interval match practical observation. First, the
interval diverges when the SNR is small. Thus, if the
expression signal is close to the background variation,
it is harder to reject the null hypothesis. Second, as
the SNR increases, the interval converges to the result
given by Equation (3), meaning that the background-
noise influence is becoming negligible. Third, if SN R →
0, then the interval is limited by the ratio distribution
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of background levels from the red and green channels,
or T = N (0, κσBG)/N (0, σBG), which has a Cauchy
distribution, fT (t) = κπ−1(1 + κ2t2). For κ = 1, the
99% confidence interval of the Cauchy distribution is
[−63.7, 63.7], and it is the limit of Equation (16) when
the signal is zero. In practical application, the estimate
of the fluorescent intensity (both Rk and Gk) is always
positive. Thus, the ratio will never be negative. To reflect
this limitation, a negative ratio bound is always set to
0. Finally, when the two background variations are not
the same (κ �= 1), the upper and lower bounds are not
symmetric, as illustrated in Figure 4(b). Figure 5 shows a
surface of confidence intervals for κ = 0.1 to 10.

If the background is relatively flat, we can use the av-
erage of the local background intensity and its empirical
standard deviation as estimates of µB R and σB R , respec-
tively, and similarly for µBG and σBG . The coefficient of
variation, c, of the expression intensity is derived from ra-
tio analysis given by Equation (4) (or the improved version
in Equation (13)) using a set of housekeeping genes. The
simulation of Equation (15) provides an adaptive confi-
dence interval for every gene, dependent on p, which is
estimated as the average of the red and green expression
intensities Rk and Gk , which share common mean pk un-
der the null hypothesis (p being dependent on gene k).
A sequence of confidence intervals derived from the null
hypothesis estimator of pk is shown in Figure 6.

Based on the image analysis, the background may de-
pend on location. If local background is extracted instead
of global, then the simulation may have to be performed
at each gene location. Simulation is necessary only when
the SNR is less than 6; otherwise, the previous method
dependent on analytic formulation of the distribution of T
is sufficiently accurate to be used.

Correction of background estimation
Owing to interaction between the fluorescent signal and
background, local-background estimation is often biased.
Generally, the bias of the estimation increases when the
background level is higher. To demonstrate the effect of
the bias, we again use the model of Equation (15). The
simulation is performed in the following manner:

(i) generate 10 000 data points from an exponential
distribution with mean 2000 to simulate 10 000 gene
expression levels,

(ii) assuming a constant coefficient of variation c = 0.2,
simulate actual fluorescent intensity measurements
given the null hypothesis by taking each of the
10 000 points as a mean for a Gaussian model. For
each point, two simulated intensities are generated
from the model to represent measurements from
different channels,

(iii) simulate background level by a normal distribution.

If no bias is assumed, then add a random quantity
generated from N (0, 100) to all fluorescent intensi-
ties in both channels. If some bias is assumed, then
add a random quantity generated from N (b, 100) to
one channel or both.

When no background bias is added, the log-scaled
scatter plot of simulated intensities shown in Figure 7a
exhibits expected characteristics. Due to the constant cv,
the spread of expression data around the 45◦ diagonal is
consistent when the SNR is high. The spread of expression
data diverges when the SNR is low (lower-left corner).

If we add a constant bias to the background estimation,
as in Figure 7b, then the centroid of the expression data
turns to produce the commonly observed ‘dog-leg’ effect
(which can also result from other factors, such as the
possible nonlinearity of amplification between the Cy3
and Cy5 channels). Here we introduce a method that
may partly fix the dog-leg problem, although it is up to
individual researchers to determine the exact causes of the
dog-leg effect.

A large-scale simulation reveals that there is no differ-
ence if both channel background levels are either underes-
timated or overestimated. Moreover, there is no clear way
to identify which channel background is under or over-
estimated. The best we can do is to find the difference
of the biases from two background-level estimations. To
compensate for this difference, we can add the bias differ-
ence to one channel, depending on the sign of the bias dif-
ference. The risk of this procedure is possible ratio distor-
tion, since a positive constant is added to the background-
subtracted intensity measurement. We recommend data vi-
sualization before using the procedure.

To estimate the bias difference, we find the relationship
between the red and green intensities under the null
hypothesis by assuming a linear relation, G = a R + b.
After the calibration given by Equation (8), the slope a is
usually close to 1, and measurement bias is represented by
b. Thus, only one parameter needs to be estimated from a
set of intensity measurements, {Rk , Gk}, k = 1, 2, . . . , N .
Typically, linear regression by least-squares fitting is used;
however, it is not appropriate here because the variances
of the intensity measurements Rk and Gk increase when
the intensities increase. Therefore, we employ a chi-square
fitting method (Bevington, 1969) that minimizes

χ2 =
N∑

k=1

(Gk − (a Rk + b))2

σ 2
Rk
+ σ 2

Gk

(17)

which yields a solution for the bias difference (see
Appendix on web page),

b =
∑N

k=1 (c2(Rk + Gk)+ 2σ̂ 2
B R + 2σ̂ 2

BG)−1(Gk − Rk)∑N
k=1 (c2(Rk + Gk)+ 2σ̂ 2

B R + 2σ̂ 2
BG)−1

(18)
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The result from chi-square fitting is more complicated
if we do not assume a slope parameter a ≈ 1, but
a ≈ 1 is appropriate for practical application and can
be validated before applying the χ2-square test. When
b > 0, b is added to all intensity measurements from the
green channel; otherwise, it is added to intensities from the
red channel. In practical application, the entire estimation
process may have to be iterated since some large outliers
should be removed. The appendix gives an example to
demonstrate the precision of this estimation procedure.

QUALITY METRIC FOR RATIO STATISTICS
It is advantageous to attach a quality metric to each ratio
prior to subsequent analysis. A metric must be designed
at an early stage because information is lost when ratios
are extracted from the image and forwarded to higher
level processing. Moreover, in practical application, filters
may be used, or there may be human intervention during
image analysis. We propose a quality metric for cDNA
expression ratio measurement that combines local and
global statistics to describe the measurement quality at
each ratio measurement. The single quality metric enables
unified and universally applicable data filtering, and it can
be used directly in higher-level data analysis.

For a given cDNA target, the following factors affect ra-
tio measurement quality: (1) Weak fluorescent intensities
from both channels result in less stable ratios. This quality
problem has been addressed in the last section through
the confidence interval if over or underexpression is the
only concern; however, when comparing one experiment
to another via a common reference sample, low intensities
provide less reliable ratios. (2) A smaller than normal de-
tected target area indicates possible poor quality in clone
preparation, printing, or hybridization. (3) A very high lo-
cal background level may suggest a problematic region
in which any intensity measurement may be inaccurate.
(4) A high standard deviation of target intensity is usually
caused by the contamination of strong fluorescent particles
within the target region. Our image processing package
extracts all of this information, and for each factor, a qual-
ity metric w is defined, w taking a value from 1 (highest
measurement quality) to 0 (lowest measurement quality).

Fluorescent intensity measurement quality
For gene k, a red-channel SNR exceeding 6 means that

µRk � E[B Rk − µB Rk ] + 6σB Rk (19)

The signal is very strong relative to background variation,
and we judge the intensity quality to be 1. A decline in
quality can be measured relative to the quotient SN RRk .
Similar statements apply to the green channel. For a
conservative quality metric, we take the minimum of
the SNRs to define the quality metric. Under the null

hypothesis, the signal means are equal, so that

min{SN RR, SN RG} = µR

max{σB R, σBG} =
µR

σB
(20)

(k dropped to ease notation). For the intensity-measurement
quality relative to the background variation, we replace µR
and σB by their null-hypothesis estimators, (R+G)/2 and
σ̂B , to obtain

wI =




0,
R + G

2σ̂B
� 3

R + G

6σ̂B
, 3 <

R + G

2σ̂B
� 6

1, otherwise

(21)

Target area measurement quality
In a typical printing process, each printing tip produces
a relatively consistent spot area. We use the number of
pixels to describe the target area quality. Since each print-
tip produces a unique spot shape and spot area (total
number of pixels), we use the target mask derived in the
image analysis (see web page) to judge each target. Let
AM be the area of mask of the cDNA target for a particular
print-tip, and let ATk be the area of the two largest
connected components of the target k. The proportional
area of each target is ak = ATk /AM . We define the area
measurement quality by

wa =




0, a < smin = max{10/AM , 0.05}
a − smin

smin − sb
, smin < a � sb = 0.20

1, otherwise
(22)

(subscript k dropped). The first branch in Equation (22)
assigns metric 0 to any target with a size less than 0.05×
AM , or less than 10 pixels. For sizes exceeding 20% of
the mask size AM , the quality metric is 1; otherwise, the
quality factor varies from 0 to 1, depending on where
the target size is in the interval [smin, sb]. We choose the
largest two connected components for target-area quality
measurement (not to be confused with the union area
used for target intensity measurement) since the smaller
fragments of the target are usually due to heavy noise
interaction.

Background flatness quality
Background abnormality can cause signal detection prob-
lems or incorrect measurements of the local background
level. One way to detect this abnormality is to compare the
local background intensity B Rk to a global mean intensity
µB R using the corresponding global standard deviation
σB R . The global background level is taken as an average of
local background levels within a relatively large area, say,
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the sub-array produced by one printing tip. We assume the
abnormality is brighter. It is possible to have a local back-
ground area darker than the global background owing to
scratches or some other mishandling steps; however, im-
age processing usually deals with this problem correctly.
If the local background B Rk is less than µB R+4σB R , then
it is within the flatness requirement of the background;
if not, then we linearly rate the quality from 1 to 0 until
it reaches µB R + 6σB R . The green channel background
flatness is defined similarly. We obtain the background
flatness definition wb = min {wB R, wBG}, where

wB R =




1, B Rk < µB R + 4σB R
(µB R+6σ B R)−B Rk

3σB R
, µB R + 4σB R � B Rk

< µB R + 6σB R

0, B Rk � µB R + 6σB R
(23)

and wBG is defined similarly.

Signal intensity consistency quality
In cases where contamination crosses the cDNA target
or strong speckle spots sit atop the target area, the
reported signal intensity may not truly reflect the actual
signal. Another problem arises when one channel is
very strong, the other is weak, and targets tend to be
larger in the stronger channel. This causes the weak
target region to contain too many background pixels,
thereby increasing signal variation. In both cases, the
signal standard deviation will be unusually high. To
establish a normal range of signal intensity relative to
its standard deviation, or coefficient of variation, we
have simulated three cases. Figure 8 shows: (a) a bell-
shaped intensity profile from a Gaussian distribution; (b)
a stretched bell-shaped profile with a flat-top; and (c) a
bimodal profile corresponding to a donut-shaped target.
Simulated cvs for these three cases are 0.48, 0.45, and
0.31, respectively. The cv can be significantly perturbed
by intensity inconsistencies. If more background area
is included, corresponding to Figure 8d, then the cv is
0.81. If some strong pixels are included, corresponding
to Figure 8e, the cv becomes 0.98. Adding noise to the
target shape will not dramatically change the cv, as shown
in Figure 8f, in which strong noise has been added to
Figure 8a. In this case, the cv is 0.59, an increase of
only 0.11 from Figure 8a. Based on these considerations,
we define a signal-intensity-consistency quality factor.
Letting cvmin,k denote the minimum between the intensity
coefficients of variation for the red and green channels,

ws =




0 1.1 < cvmin,k
cvmin,k − 0.9

0.2
0.9 < cvmin,k � 1.1

1 cvmin,k � 0.9

(24)

Total measurement quality
Overall, we would like to report only one quality factor to
the user, so that a reference quality can be recommended
for any experiment. Motivated by the desire that spots
rated to be of high quality are good with respect to all
the criteria, we define the total quality metric as the
minimum of the four individual metrics. One may utilize
more quality measurements similar to the four we have
discussed, so long as they follow the same scale: from 0
(lowest) to 1 (highest).

Application and assessment of quality metric
The quality metric can be used to redefine the ratio
parameter estimator given in Equation (4) by

c =
√√√√[

n∑
i=1

wi
(ti − 1)2

(t2
i + 1)

] /
n∑

i=1

wi (25)

Equation (26) provides a more robust estimator for c when
strong noise is present. Since there is no need to apply
data filtering steps before evaluating Equation (6) c is free
of instability due to such filtering. The same scheme can
be applied to various calculations, such as the estimation
for m (Equation (8)), estimation for background bias b
(Equation (18)) and many others.

The quality weight is useful for downstream data
analysis tasks, such as the similarity measure for gene
expression profile analysis. A typical similarity measure
is the correlation coefficient, which can be easily modified
by introducing the weight into the calculation to yield

ρxy =

n∑
i=1

wi (xi − µx )(yi − µy)

√√√√ n∑
i=1

wi (xi − µx )2

√√√√ n∑
i=1

wi (yi − µy)2

(26)

where xi and yi are the log-transformed ratios for genes
x and y in n experiments, and wi = wxi wyi . For more
stringent conditions, one may binarize wi to be 0 or 1.
Then Equation (26) reduces to the Pearson correlation
coefficient with only genes having measurement quality
1 being included.

A reliable quality metric makes it is possible to use only
the best measurements achieved or to discount the weight
of inferior measurements in downstream analysis so that
the more certain measurements dominate the outcome.
A quality metric should be able to identify the array
measurements that are precise enough to likely reproduce
with a narrow variance. The proposed metric has been
tested by examining its ability to find measurements with
low variance from a series of eight replications of the same
measurement. Quality assessments should fractionate the
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measurements into classes where increasing quality of
the individual measurements correlate with increased
reproducibility of the observed ratio across the replicates.

To produce the replicate series of hybridizations, RNAs
from a melanoma (UACC903) and a myeloid (ML1)
cell line were labeled and profiled on eight microarrays,
each having 6548 genes. As these cell types are quite
different, their comparison provides a very wide range of
observed abundance ratios with which to test the quality-
determining algorithm. The RNAs were labeled in two
batches, one sufficient for 5 hybridizations, where Cy5
was used for UACC903 and Cy3 for ML1, and three in
which the dye assignments were swapped. All methods
for array fabrication, RNA labeling and hybridization
were as previously described (Jiang et al., 2001). After
hybridization and scanning, ratio and quality data were
extracted for all measurements. To evaluate reproducibil-
ity, the ratio values were converted to log10 ratio values
and the standard deviation of the log10 ratio value for each
gene was calculated. Since low quality measurements are
expected to severely degrade reproducibility, the overall
quality of the series of measurements was judged conser-
vatively. Overall quality for a given gene was represented
by the median quality value for the series of replicates.

A histogram of the distribution of standard deviations
of the log10 ratio values for all genes is shown in Panel
A of Figure 9. The observed distribution of variances
reflects the wide distribution of signal strengths typically
encountered in array experiments. The abundance of
message for the genes being detected varies from near total
absence to many copies per cell. This produces signals
ranging from indistinguishable from background noise, to
hundreds of times this level, thereby generating a broad
spectrum of measurement variance. Panels B through D
of Figure 9 show the progressive decrease in both median
variance and spread of variance associated with fractions
of the total set having higher and higher median qualities.
If one uses the median variance of each fraction as an
estimate of σ for each quality fraction, then the bounds
of a 95% confidence interval for the ratio determinations
in each fraction can be estimated. The genes with median
qualities in the lowest third of possible values have an
estimated 95% confidence interval of 0.29–3.44, while
those having median qualities in the top third of possible
values have the much tighter 95% confidence interval of
0.7–1.43. It is clearly possible to use the proposed metric
to identify the most reproducible measurements being
produced.

CONCLUSION
The main focus of this paper has been on the estimation
and significance determination of signal ratios arising
from the two channels of a cDNA microarray. For strong

signals, the previous assumption of a constant coefficient
of variation for the distribution of the red and green
channel intensities has been sharpened so that it is only
assumed to hold for the target signal alone, not the total
intensity measurement over the target. For a large SNR,
there is little difference between the two suppositions;
however, the change is important when there is a low
SNR. The cost of the more refined model is loss of an
analytic expression for the ratio density and the necessity
or using Monte Carlo methods. The improvement in ratio
estimation for weak signals is well worth the cost. Finally,
it is clear that poor image quality adversely affects ratio
measurements. A quality measure has been introduced that
facilitates either the deletion of poor-quality spots or the
weighting of post-processing statistics according to spot
quality.
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